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Lewis acid-catalyzed reduction of dithioacetals by
1,4-cyclohexadiene
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Abstract—Dithioacetals were reduced by 1,4-cyclohexadiene in the presence of a catalytic amount of Lewis acid to afford the cor-
responding sulfides in good yields.
� 2007 Elsevier Ltd. All rights reserved.
Table 1. Aromatization of 1,4-CHD

Lewis acid

CDCl3, rt

Entry Lewis acid (mol %) Time Yielda (%) Conv.a (%)

1 AlCl3 (100) 8 min 31 100
2 AlCl3 (12) 30 min 37 100
3 EtAlCl2 (100) 11 min —b 100
4 BF3ÆOEt2 (100) 7 d 30 96
5 GaCl3 (100) 8 min —b 100
6 GaCl3 (10) 10 min 15 100
7 InCl3 (100) 7 d 2 2
8 TiCl4 (91) 21 h 42 91
9 ZnCl2 (140) 7 d 5 5
The oxidation of 1,4-cyclohexadiene (1,4-CHD) deriva-
tives to afford benzene derivatives is a useful aromatiza-
tion method in organic reactions.1 Various oxidants
such as chloranil,1,2 DDQ,1,3 trityl salts,1,4 and oxygen5

have been used for this purpose. The oxidation of 1,4-
CHD after deprotonation by n-BuLi/N,N,N 0,N 0-tetra-
methylethylenediamine is also reported.1,6 Furthermore,
Pd/C is the effective catalyst for the aromatization of
1,4-CHD.1,3a,7 Although Lewis acid-catalyzed aromati-
zation of 1,4-CHD and related hydrocarbons has been
extensively studied, selective aromatization reactions
using Lewis acids are very limited.1,8 Since the aromati-
zation of 1,4-CHD formally leads to the concomitant
formation of two hydrogen atoms, 1,4-CHD may have
the potential usefulness as the reductant. However,
examples of the reduction using 1,4-CHD are rare.
For example, catalytic hydrogenation using 1,4-CHD
as hydrogen source is performed typically by Pd/C.9

1,4-CHD has also been used as the radical hydrogen
donor,10 especially in Bergmam cyclization.11 In this
Letter, we wish to report a novel finding that various
Lewis acids smoothly induce the dehydrogenation of
1,4-CHD, and more interestingly, 1,4-CHD acts as the
reductant for dithioacetal to monosulfide transforma-
tion in the presence of these Lewis acids.

1,4-CHD was treated with aluminium(III) chloride at
room temperature in CDCl3, and the reaction was mon-
itored by 1H NMR. The signals of 1,4-CHD immedi-
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ately disappeared, and the signals of benzene and
complex aliphatic hydrocarbons which might be formed
by cationic oligomerization accompanied with aromati-
zation appeared with the evolution of gas (Table 1, entry
1). The dehydrogenation proceeded even in the presence
of a catalytic amount of Lewis acids (entries 2 and 6).
When ethylaluminum dichloride and gallium(III) chlo-
ride were used, complex aromatic compounds were ob-
tained probably because of Friedel–Crafts reaction
(entries 3 and 5). Although indium(III) chloride, zinc(II)
chloride and zinc(II) iodide showed lower activity for
the aromatization, the selectivity was high (entries 7, 9
and 10).
10 ZnI2 (100) 12 d 97 100

a Determined by 1H NMR.
b Complex aromatic compounds were observed.
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Scheme 1. Plausible reaction mechanism of aromatization.
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Plausible mechanism of this aromatization is shown in
Scheme 1. Lewis acid abstracts hydride8b,12 from 1,4-
CHD to form intermediary hydride complex and cyclo-
hexadienyl cation. The deprotonation of the cation by
the hydride affords benzene. We were prompted to use
intermediary hydride complex as the reductant.

Since we previously reported the reduction of thioacetals
by gallium(II) chloride,13 we tried to use the above aro-
matization system for the reduction of thioacetals.
When 1-naphthaldehyde bis(ethylthio)acetal was treated
with 2.0 equiv of 1,4-CHD in the presence of 10 mol %
of aluminium(III) chloride, ethyl (1-naphthyl)methyl
sulfide was obtained in 84% yield. Since the selective
reduction of thioacetal to sulfide without the formation
of hydrocarbon is a rare transformation,14 we optimized
the reduction conditions for the efficient transformation
of thioacetals to sulfides. The results are shown in Table
2. First, the reduction was carried out using various
unsaturated hydrocarbons. Hydrocarbons with 1,4-
CHD structure showed reducing activity, and 1,4-
CHD was the most effective reductant (entries 1–3).
Reduction proceeded effectively by even 1.0 equiv of
1,4-CHD.15 1,3-CHD did not work at all because cat-
ionic polymerization of 1,3-CHD preferentially occurred
(entry 4). Lewis acid greatly affected the yield of sulfide.
Table 2. Optimization of the reaction conditions

EtS SEt Lewis acid
hydrocarbo

solvent
temp., tim

Entry Lewis acid (mol %) Hydrocarbon (1.0 equiv) S

1 AlCl3 (10) 1,4-CHD D
2 AlCl3 (10) c-Terpinene D
3 AlCl3 (10) 9,10-DHAc D
4 AlCl3 (10) 1,3-CHD D
5 AlCl3 (10) Cyclohexene D
6 AlCl3 (5) 1,4-CHD D
7 EtAlCl2 (5) 1,4-CHD D
8 Et2AlCl (5) 1,4-CHD D
9 BF3ÆOEt2 (5) 1,4-CHD D

10 GaCl3 (5) 1,4-CHD D
11 InCl3 (5) 1,4-CHD D
12 TiCl4 (5) 1,4-CHD D
13 ZnCl2 (5) 1,4-CHD D
14 AlCl3 (5) 1,4-CHD D
15 AlCl3 (5) 1,4-CHD D
16 AlCl3 (5) 1,4-CHD P
17 AlCl3 (5) 1,4-CHD A
18 AlCl3 (5) 1,4-CHD T

a DCE: 1,2-dichloroethane; PhH: benzene; AN: acetonitrile; THF: tetrahydr
b Determined by 1H NMR.
c 9,10-DHA: 9,10-dihydroanthracene.
The Lewis acids that were active in aromatization were
generally effective in reduction. The highest yield was
obtained with ethylaluminum dichloride (entry 7). The
yield increased at the higher temperature (entries 6, 14
and 15). Since the reaction proceeded even at lower tem-
perature, further experiments were carried out at room
temperature. Sulfide was obtained in high yield when
nonpolar solvent was used (entries 16–18). Since the
acidity of a Lewis acid is suppressed in a polar solvent,
the Lewis acidity of the catalyst seems to be the essential
factor in this reduction.

The reduction of various thioacetals was investigated
with 1,4-CHD in the presence of ethylaluminum dichlo-
ride or gallium(III) chloride. The results are summarized
in Table 3.16,17 Aromatic thioacetals were reduced
smoothly to afford the corresponding sulfide in good
to excellent yields (entries 1–3 and 6). For the reduction
of less reactive thioacetals such as aliphatic thioacetal,
cyclic thioacetal, and thioketal, the use of gallium(III)
chloride instead of ethylaluminum dichloride provided
better results (entries 4, 5, 7–9). Surprisingly, in the case
of cyclic thioacetal (entry 8), 1,3-bis(benzylthio)propane
was obtained as the major product while 3-(benzyl-
thio)propane-1-thiol was not detected. It can be deduced
that facile acetal exchange reaction was accompanied
with the reduction. Gallium(III) chloride was also effec-
tive when dimethylacetal was used as the substrate (en-
tries 10–12).

A plausible reaction mechanism is illustrated in
Scheme 2. Lewis acid has two roles: activation of
thioacetal and abstraction of hydride from 1,4-CHD
to form hydride complex. Sulfide is obtained by the
SEt
n

e

olventa Temperature (�C) Time (h) Yieldb (%)

CE rt 6 94
CE rt 6 60
CE rt 6 65
CE rt 6 Trace
CE rt 6 2
CE rt 5 81
CE rt 5 94
CE rt 5 33
CE rt 5 73
CE rt 5 82
CE rt 5 50
CE rt 5 72
CE rt 5 1
CE 80 5 95
CE 0 5 63
hH rt 5 81
N rt 5 2
HF rt 5 Trace

ofuran.



Table 3. Reduction of thioacetals

Lewis acid
1.0 equiv 1,4-CHD

R
SR'

SR' DCE
R

SR'

Entry Substrate Lewis acid (mol %) Temperature (�C) Time (h) Yielda (%)

1 PhCH(SEt)2 EtAlCl2 (5) rt 5.5 88
2 p-MeOC6H4CH(SEt)2 EtAlCl2 (5) rt 9 87
3 p-ClC6H4CH(SEt)2 EtAlCl2 (5) rt 5.5 96
4 Me(CH2)10CH(SEt)2 EtAlCl2 (5) 80 24 29b

5 Me(CH2)10CH(SEt)2 GaCl3 (5) 80 24 61b

6 PhCH(SPh)2 EtAlCl2 (5) rt 3 77

7
S

S
Ph EtAlCl2 (5) 80 24 0

8
S

S
Ph GaCl3 (10) 80 40 44b,c

9 PhC(Me)(SEt)2 EtAlCl2 (5) 80 20 55b

10 PhCH(OMe)2 EtAlCl2 (5) rt 5 0
11 PhCH(OMe)2 GaCl3 (5) rt 10 28d

12 PhCH(OMe)2 GaCl3 (5) 80 21 92b,d

a Determined by 1H NMR.
b 2.0 equiv of 1,4-CHD was used.
c The product is PhCH2S(CH2)3SCH2Ph.
d The product is PhCH2OMe.
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Scheme 2. Plausible reaction mechanism for the reduction of thio-
acetal by 1,4-CHD.
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attack of the hydride complex to the activated thio-
acetal. The cyclohexadienyl cation reacts with thiolate
complex to afford thiol and benzene with regenerating
the Lewis acid.

In summary, we have developed a novel method for the
reduction of thioacetal to sulfide using 1,4-CHD. The
application of reduction system using 1,4-CHD is in
progress.
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